College of Electronic and Technology-Bani Walid

Subject: Information and Coding Theory

6th semester

Date 04.11 .2015

Test time: 30 Minutes

Q.1) Sketch the block diagram of a digital communication system.

Q.2) Defined the messages from the point of view of information theory.

Q.3) A discrete information source creates 4 symbols x1, x2, x3 and x4, with probabilities of occurrence:

$$p(x1) = 0.5$$

$$p(x2) = 0.26$$

$$p(x3) = 0.2$$

$$p(x4) = 0.03$$

(a) What is the information content I(x1) of each symbol of the information source?

(b) Determine the entropy H(X) of the information source.

(1)

(c) Find number of binary decision H o

(d) What is the redundancy R of the information source?

(e) Find a binary Shannon code.

(f) Compute the average codeword length.

(g) Sketch the binary tree of Shannon code.

Notes

$$2^{-1} = 0.5, 2^{-2} = 0.25, 2^{-3} = 0.125, 2^{-4} = 0.0625, 2^{-5} = 0.03125$$
 $y = 0.05 = 0.05$
 $y = 0.05 = 0.03125$

Good Luck

MANNE STATE

.

College of Electronic and Technology / Beni Walid Department of Communication Engineering Exam: November 2015 6th Semester

Subject: In	Exam: November 2015 formation & Coding Theory ovember 2015	6 th Semester Examiner: Dr. Masoud Eddaghel Examination time: 90 Minutes
Q1/ [4 mar (i) (ii) (iii)	Draw the Block diagram of Digital C Define the Information content I(x). What are the properties of the Inform	ation Content? = celas
efaex (i)	symbols: $(x_1=0)$, $(x_2=10)$, $(x_3=110)$, and $(x_3=110)$	$\chi_{4}=111$ $\chi_{1}=111$ $\chi_{2}=111$
Q3 / [2 mar A disci	5 /	ols x_1 , and x_2 with probabilities of
(i)	Find the average code word length (
Q4/[5 mar (i)· (ii)· (iii). ∠(iv)· (v).	Write down three properties of <u>linear</u> What is the <u>code rate</u> for <u>uncoded</u> trails the parity check code systematic co. How many errors can be corrected by	nsmission? = 1 ode $\frac{1}{V \text{ single Parity check code}}$ ation bits k=2. Find all possible code words.
Q5 / [8 mar	ks] Hamming Code with generator matri $G = \begin{pmatrix} 1000111 \\ 0100110 \\ 0010101 \\ 0001011 \end{pmatrix}$	$N = 2^{k}$ $R = \frac{k}{n}$
(i) (ii) (iii) (iv)		ossible code words.
47 4	n=4	K = 24 $N - 1 = K$

عبد الرفي مم مصد الأزرق

College of Electronic and Technology / Baniwalid Department of Communication Engineering

Final Exam: 2015/2016

Subject: Information & Coding Theory

Date: 20th of January 2016

6th Semester

Examiner: Dr. Masoud Eddaghel **Examination time: 180 Minutes**

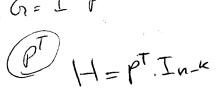
Q.1/[6 marks]

- a) Draw the block diagram of a digital communication system.
- b) What are tasks of channel coding?
- c) From point of view of information theory, what is the task of source coding?

Q.2/[6 marks]

- a) Prove or disprove that the following codes are Huffman codes:
 - (i) $\{1, 01, 00\}$
 - (ii) {00, 01, 10, 110}
 - (iii) {01, 10}

Q3/ [6 marks]


- a) Define the Noisy channel. حرت ج
- b) Define the Noiseless channel. 一) シング
- c) Draw the block diagram of information flow for Noisy (useless) channel.

Q.4/[14 marks] A binary linear block code has the following parity check matrix:

$$\begin{array}{c|cccc}
 & C_1 & C_4 & C_5 & C_7 & C_$$

$$V = 7$$
 $K = 4$

- a) Find the generator matrix G.
- b) Find the code rate Rc.
- c) Find the minimum Hamming distance of the code d_{min}
- d) Find the parity check matrix H.
- e) Write down the parity check equations. دير تشكل ارضاً نه العصورة
- f) Write down the syndrome table for the assignment of error positions.
- g) Find the psition of error by apply syndrome decoding to the received vector $\mathbf{y} = (1\ 1\ 0)$ 1001)

College of Electronic and Technology / Baniwalid **Department of Communication Engineering**

Final Exam: 2015/2016

6th Semester

Subject: Information & Coding Theory Date: 20th of January 2016

Examiner: Dr. Masoud Eddaghel

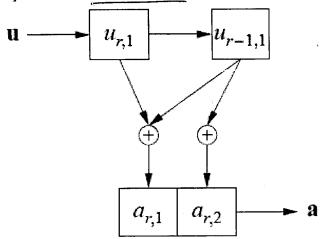
Examination time: 180 Minutes

Q.5/[8 marks] A binary linear cyclic code C(n, k) has code length n = 7 and generator polynomial: $g(x) = 1 + x^2 + x^3 + x^4$ a) The generator matrix G

K= 3

b) The code rate Rc.

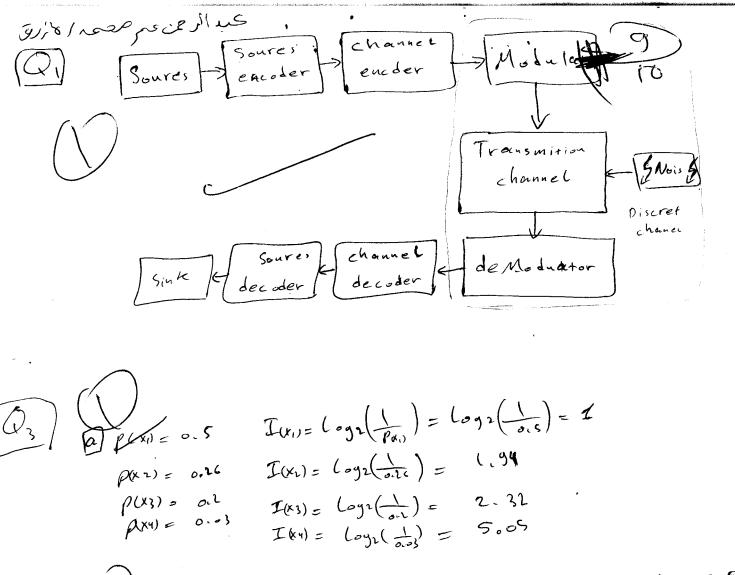
PC=K

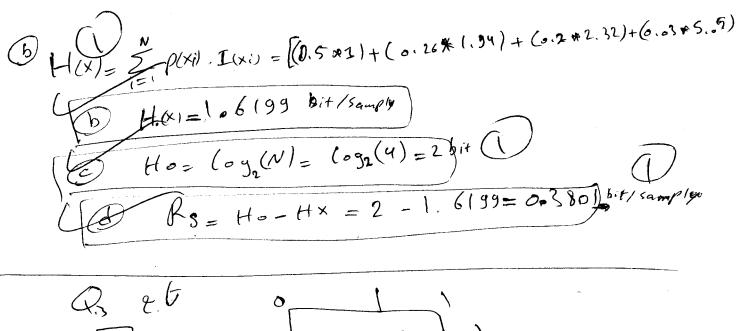

c) Hamming distance $d_{min.} = 4$

d) If all the information symbols are '1's, what is the corresponding code vector?

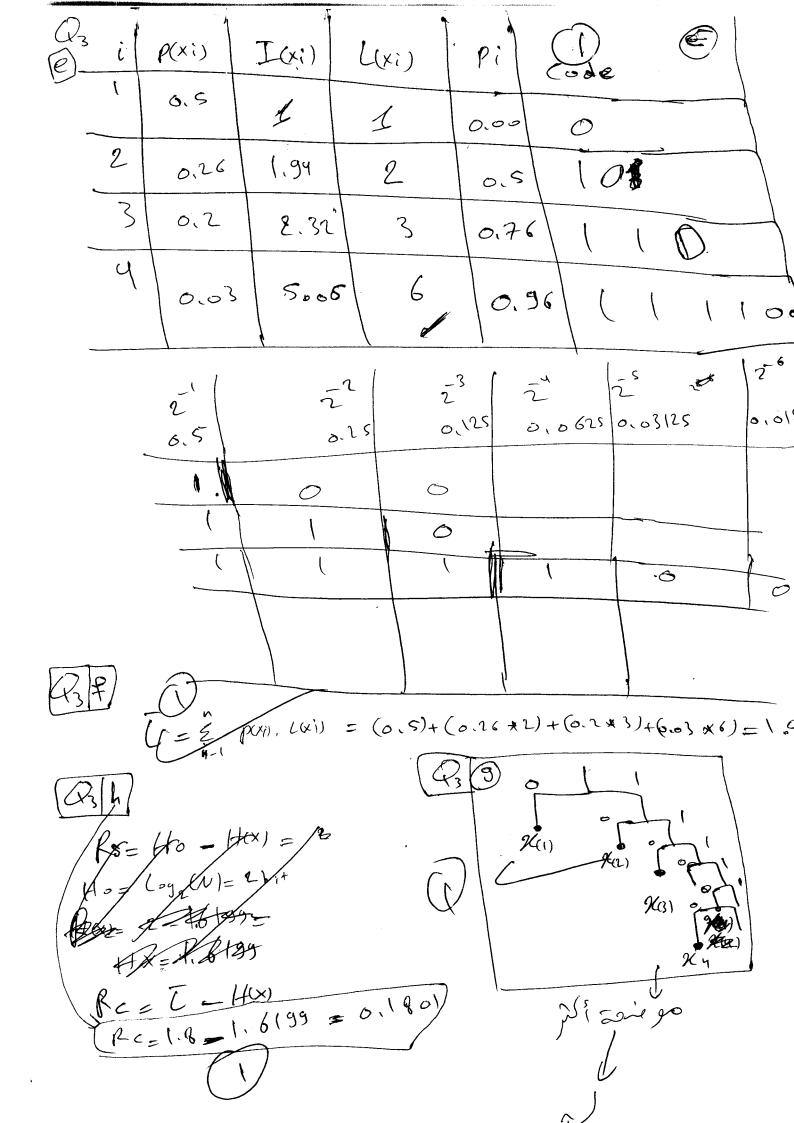
إذا كان كل أ كلي واصر أرب الكور

C(X)= 11 00 101


Q.6/[10 marks] Given is a convolutional code with the following encoding circuit



- a) Find the parameter set (n, k, m) and the code rate $R \subset A$ of the code.
- b) Determine the state table which shows input, actual, output and next states.
- c) Sketch the state diagram.


- ___ d) Sketch the Trellis diagram till the length of 5.
 - e) Is the code systematic or non-systematic?

Good Luck

XI

